Random Forests for Genetic Association Studies
Goldstein Benjamin A,
Polley Eric C and
Briggs Farren B. S.
Statistical Applications in Genetics and Molecular Biology, 2011, vol. 10, issue 1, 1-34
Abstract:
The Random Forests (RF) algorithm has become a commonly used machine learning algorithm for genetic association studies. It is well suited for genetic applications since it is both computationally efficient and models genetic causal mechanisms well. With its growing ubiquity, there has been inconsistent and less than optimal use of RF in the literature. The purpose of this review is to breakdown the theoretical and statistical basis of RF so that practitioners are able to apply it in their work. An emphasis is placed on showing how the various components contribute to bias and variance, as well as discussing variable importance measures. Applications specific to genetic studies are highlighted. To provide context, RF is compared to other commonly used machine learning algorithms.
Keywords: machine learning; SNP; genome wide association studies (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1691 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:32
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1691
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().