EconPapers    
Economics at your fingertips  
 

Fitting Boolean Networks from Steady State Perturbation Data

Almudevar Anthony, McCall Matthew N., McMurray Helene and Land Hartmut

Statistical Applications in Genetics and Molecular Biology, 2011, vol. 10, issue 1, 1-40

Abstract: Gene perturbation experiments are commonly used for the reconstruction of gene regulatory networks. Typical experimental methodology imposes persistent changes on the network. The resulting data must therefore be interpreted as a steady state from an altered gene regulatory network, rather than a direct observation of the original network. In this article an implicit modeling methodology is proposed in which the unperturbed network of interest is scored by first modeling the persistent perturbation, then predicting the steady state, which may then be compared to the observed data. This results in a many-to-one inverse problem, so a computational Bayesian approach is used to assess model uncertainty.The methodology is first demonstrated on a number of synthetic networks. It is shown that the Bayesian approach correctly assigns high posterior probability to the network structure and steady state behavior. Further, it is demonstrated that where uncertainty of model features is indicated, the uncertainty may be accurately resolved with further perturbation experiments. The methodology is then applied to the modeling of a gene regulatory network using perturbation data from nine genes which have been shown to respond synergistically to known oncogenic mutations. A hypothetical model emerges which conforms to reported regulatory properties of these genes. Furthermore, the Bayesian methodology is shown to be consistent in the sense that multiple randomized applications of the fitting algorithm converge to an approximately common posterior density on the space of models. Such consistency is generally not feasible for algorithms which report only single models. We conclude that fully Bayesian methods, coupled with models which accurately account for experimental constraints, are a suitable tool for the inference of gene regulatory networks, in terms of accuracy, estimation of model uncertainty, and experimental design.

Keywords: boolean network; gene perturbation; Bayesian modeling (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1727 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:47

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1727

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:47