Unsupervised Classification for Tiling Arrays: ChIP-chip and Transcriptome
Bérard Caroline,
Martin-Magniette Marie-Laure,
Brunaud Véronique,
Aubourg Sébastien and
Robin Stéphane
Statistical Applications in Genetics and Molecular Biology, 2011, vol. 10, issue 1, 1-22
Abstract:
Tiling arrays make possible a large-scale exploration of the genome thanks to probes which cover the whole genome with very high density, up to 2,000,000 probes. Biological questions usually addressed are either the expression difference between two conditions or the detection of transcribed regions. In this work, we propose to consider both questions simultaneously as an unsupervised classification problem by modeling the joint distribution of the two conditions. In contrast to previous methods, we account for all available information on the probes as well as biological knowledge such as annotation and spatial dependence between probes. Since probes are not biologically relevant units, we propose a classification rule for non-connected regions covered by several probes. Applications to transcriptomic and ChIP-chip data of Arabidopsis thaliana obtained with a NimbleGen tiling array highlight the importance of a precise modeling and of the region classification. The "TAHMMAnnot" package is implemented in R and C and is freely available from CRAN.
Keywords: bivariate Gaussian mixture; hidden Markov model; tiling arrays; unsupervised classification (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1692 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:50
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1692
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().