A Calibrated Multiclass Extension of AdaBoost
Rubin Daniel B.
Statistical Applications in Genetics and Molecular Biology, 2011, vol. 10, issue 1, 1-24
Abstract:
AdaBoost is a popular and successful data mining technique for binary classification. However, there is no universally agreed upon extension of the method for problems with more than two classes. Most multiclass generalizations simply reduce the problem to a series of binary classification problems. The statistical interpretation of AdaBoost is that it operates through loss-based estimation: by using an exponential loss function as a surrogate for misclassification loss, it sequentially minimizes empirical risk through fitting a base classifier to iteratively reweighted training data. While there are several extensions using loss-based estimation with multiclass base classifiers, these use multiclass versions of the exponential loss that are not classification calibrated: unless restrictions are placed on conditional class probabilities, it becomes possible to have optimal surrogate risk but poor misclassification risk. In this work, we introduce a new AdaBoost extension called AdaBoost.SL that does not reduce the problem into binary subproblems and that uses a classification-calibrated multiclass exponential loss function. Numerical experiments show the algorithm performs well on benchmark datasets.
Keywords: AdaBoost; boosting; multiclass classification (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1731 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:54
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1731
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().