Stopping-Time Resampling and Population Genetic Inference under Coalescent Models
Jenkins Paul A.
Statistical Applications in Genetics and Molecular Biology, 2012, vol. 11, issue 1, 1-20
Abstract:
To extract full information from samples of DNA sequence data, it is necessary to use sophisticated model-based techniques such as importance sampling under the coalescent. However, these are limited in the size of datasets they can handle efficiently. Chen and Liu (2000) introduced the idea of stopping-time resampling and showed that it can dramatically improve the efficiency of importance sampling methods under a finite-alleles coalescent model. In this paper, a new framework is developed for designing stopping-time resampling schemes under more general models. It is implemented on data both from infinite sites and stepwise models of mutation, and extended to incorporate crossover recombination. A simulation study shows that this new framework offers a substantial improvement in the accuracy of likelihood estimation over a range of parameters, while a direct application of the scheme of Chen and Liu (2000) can actually diminish the estimate. The method imposes no additional computational burden and is robust to the choice of parameters.
Keywords: coalescence; importance sampling; resampling; infinite sites (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1770 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:11:y:2012:i:1:n:9
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1770
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().