Improving Pedigree-based Linkage Analysis by Estimating Coancestry Among Families
Glazner Chris and
Thompson Elizabeth Alison
Additional contact information
Glazner Chris: University of Washington
Thompson Elizabeth Alison: University of Washington
Statistical Applications in Genetics and Molecular Biology, 2012, vol. 11, issue 2, 18
Abstract:
We present a method for improving the power of linkage analysis by detecting chromosome segments shared identical by descent (IBD) by individuals not known to be related. Existing Markov chain Monte Carlo methods sample descent patterns on pedigrees conditional on observed marker data. These patterns can be stored as IBD graphs, which express shared ancestry only, rather than specific family relationships. A model for IBD between unrelated individuals allows the estimation of coancestry between individuals in different pedigrees. IBD graphs on separate pedigrees can then be combined using these estimates. We report results from analyses of three sets of simulated marker data on two different pedigrees. We show that when families share a gene for a trait due to shared ancestry on the order of tens of generations, our method can detect a linkage signal when independent analyses of the families do not.
Keywords: linkage; pedigrees; gene coancestry; IBD (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1718 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:11:y:2012:i:2:n:11
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1718
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().