EconPapers    
Economics at your fingertips  
 

GENOVA: Gene Overlap Analysis of GWAS Results

Tang Clara S. and Ferreira Manuel A. R.
Additional contact information
Tang Clara S.: Queensland Institute of Medical Research
Ferreira Manuel A. R.: Queensland Institute of Medical Research

Statistical Applications in Genetics and Molecular Biology, 2012, vol. 11, issue 3, 15

Abstract: In many published genome-wide association studies (GWAS), the top few strongly associated variants are often located in or near known genes. This observation raises the more general hypothesis that variants nominally associated with a phenotype are more likely to overlap genes than those not associated with a phenotype. We developed a simple approach – named GENe OVerlap Analysis (GENOVA) – to formally test this hypothesis. This approach includes two steps. First, we define largely independent groups of highly correlated SNPs (or “clumps”) and classify each clump as intersecting a gene or not. Second, we determine how strongly associated each clump is with the phenotype and use logistic regression to formally test the hypothesis that clumps associated with the phenotype are more likely to intersect genes. Simulations suggest that the power of GENOVA is affected by at least three factors: GWAS sample size, the gene boundaries used to define gene-intersecting clumps and the P-value threshold used to define phenotype-associated clumps. We applied GENOVA to results from three recent GWAS meta-analyses of height, body mass index (BMI) and waist-hip ratio (WHR) conducted by the GIANT consortium. SNPs associated with variation in height were 1.44-fold more likely to be in or near genes than SNPs not associated with height (P = 5x10-28). A weaker association was observed for BMI (1.09-fold, P = 0.008) and WHR (1.09-fold, P = 0.014). GENOVA is implemented in C++ and is freely available at https://genepi.qimr.edu.au/staff/manuelF/genova/main.html.

Keywords: gene; enrichment; annotation; method (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/1544-6115.1784 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:11:y:2012:i:3:n:6

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/1544-6115.1784

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:11:y:2012:i:3:n:6