Analyzing Genetic Association Studies with an Extended Propensity Score Approach
Zhao Huaqing,
Rebbeck Timothy R. and
Mitra Nandita
Additional contact information
Zhao Huaqing: The Children's Hospital of Philadelphia
Rebbeck Timothy R.: University of Pennsylvania
Mitra Nandita: University of Pennsylvania
Statistical Applications in Genetics and Molecular Biology, 2012, vol. 11, issue 5, 24
Abstract:
Propensity scores are commonly used to address confounding in observational studies. However, they have not been previously adapted to deal with bias in genetic association studies. We propose an extension of our previous method (Zhao et al., 2009) that uses a multilevel propensity score approach and allows one to estimate the effect of a genotype under an additive model and also simultaneously adjusts for confounders such as genetic ancestry and patient and disease characteristics. Using simulation studies, we demonstrate that this extended genetic propensity score (eGPS) can adequately adjust and consistently correct for bias due to confounding in a variety of circumstances. Under all simulation scenarios, the eGPS method yields estimates with bias close to 0 (mean=0.018, standard error=0.01). Our method also preserves statistical properties such as coverage probability, Type I error, and power. We illustrate this approach in a population-based genetic association study of testicular germ cell tumors and KITLG and SPRY4 susceptibility genes. We conclude that our method provides a novel and broadly applicable analytic strategy for obtaining less biased and more valid estimates of genetic associations.
Keywords: population-based genetic association; propensity scores; population stratification; confounding; genetic and non-genetic covariates; susceptibility genes. (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1515/1544-6115.1790 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:11:y:2012:i:5:n:6
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/1544-6115.1790
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().