EconPapers    
Economics at your fingertips  
 

Variational Bayes Procedure for Effective Classification of Tumor Type with Microarray Gene Expression Data

Hayashi Takeshi
Additional contact information
Hayashi Takeshi: National Agricultural Research Center

Statistical Applications in Genetics and Molecular Biology, 2012, vol. 11, issue 5, 21

Abstract: Recently, microarrays that can simultaneously measure the expression levels of thousands of genes have become a valuable tool for classifying tumors. For such classification, where the sample size is usually much smaller than the number of genes, it is essential to construct properly sparse models for accurately predicting tumor types to avoid over-fitting. Bayesian shrinkage estimation is considered a suitable method for providing such sparse models, effectively shrinking estimates of the effects for many irrelevant genes to zero while maintaining those of a small number of relevant genes at significant magnitudes. However, Bayesian analysis usually requires time-consuming computational techniques such as computationally intensive MCMC iterations. This paper describes a computationally effective method of Bayesian shrinkage regression (BSR) incorporating multiple hierarchical structures for constructing a classification model for tumor types using microarray gene expression data. We use a variational approximation method which provides simple approximations of posterior distributions of parameters to reduce computational burden in the Bayesian estimation. This computationally efficient BSR procedure yields a properly sparse model for accurately and rapidly classifying tumor samples. The accuracy of tumor classification is shown to be at least equivalent to that of other methods such as support vector machine and partial least squares using simulated and actual gene expression data sets.

Keywords: Bayesian shrinkage regression; variational approximation; microarray gene expression data; tumor classification (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/1544-6115.1700 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:11:y:2012:i:5:n:9

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/1544-6115.1700

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:11:y:2012:i:5:n:9