EconPapers    
Economics at your fingertips  
 

An Order Estimation Based Approach to Identify Response Genes for Microarray Time Course Data

Lu Zhiheng K., O. Brian Allen and Desmond Anthony F.
Additional contact information
Lu Zhiheng K.: Metastract Inc.
O. Brian Allen: University of Guelph
Desmond Anthony F.: University of Guelph

Statistical Applications in Genetics and Molecular Biology, 2012, vol. 11, issue 6, 34

Abstract: Gene expression profiles from microarray time course experiments provide a unique opportunity to examine genome-wide signal processing and gene responses. A fundamental issue in microarray experiments is that the treatment condition can only be controlled at the cell level rather than at the gene level. The treatment condition does not affect all genes equally. Some genes depend on other genes to detect external changes. The dependency between genes is not fully deterministic and may vary with treatment condition. Thus the expression of each gene is potentially affected by two confounding effects: the treatment effect and the gene context effect arising from the regulatory interactions among genes. This gene context effect is hard to isolate. Neither can it be simply ignored. Instead, this gene context information which may be different under different treatment conditions is of primary biological interest.We introduce an approach which deals with the confounding effects and takes into account the uncontrollable gene context effect. Our method is based on the estimation of the number of hidden states, which, in our development, corresponds to the order of a hidden Markov model (HMM). For each gene, its observed expression is modeled by a gamma distribution determined by the corresponding hidden state at each time point. Those genes showing evidence for more than one hidden state can be categorized as the signalling genes, or in a wider sense, as the response genes which are coordinated by a cell system in reaction to a specific external condition. These response genes can be used in the comparison of different treatment conditions, to investigate the gene context effect under different treatments. Microarray time course data are also analyzed to demonstrate our method.

Keywords: microarray time course experiment; hidden Markov model; order estimation; mixture model; Gamma distribution; gene context effect (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/1544-6115.1818 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:11:y:2012:i:6:p:1-34:n:4

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/1544-6115.1818

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:11:y:2012:i:6:p:1-34:n:4