Inferring latent gene regulatory network kinetics
González Javier (),
Vujačić Ivan and
Wit Ernst
Additional contact information
González Javier: Mathematics, Statistics and Probability Unit, University of Groningen, Nijenborgh 9, Groningen, Groningen 9747 AG, The Netherlands
Vujačić Ivan: Mathematics, Statistics and Probability Unit, University of Groningen, Nijenborgh 9, Groningen, Groningen 9747 AG, The Netherlands
Wit Ernst: Mathematics, Statistics and Probability Unit, University of Groningen, Nijenborgh 9, Groningen, Groningen 9747 AG, The Netherlands
Statistical Applications in Genetics and Molecular Biology, 2013, vol. 12, issue 1, 109-127
Abstract:
Regulatory networks consist of genes encoding transcription factors (TFs) and the genes they activate or repress. Various types of systems of ordinary differential equations (ODE) have been proposed to model these networks, ranging from linear to Michaelis-Menten approaches. In practice, a serious drawback to estimate these models is that the TFs are generally unobserved. The reason is the actual lack of high-throughput techniques to measure abundance of proteins in the cell. The challenge is to infer their activity profile together with the kinetic parameters of the ODE using level expression measurements of the genes they regulate.In this work we propose general statistical framework to infer the kinetic parameters of regulatory networks with one or more TFs using time course gene expression data. Our approach is also able to predict the activity levels of the TF. We use a penalized likelihood approach where the ODE is used as a penalty. The main advantage is that the solution of the ODE is not required explicitly as it is common in most proposed methods. This makes our approach computationally efficient and suitable for large systems with many components. We use the proposed method to study a SOS repair system in Escherichia coli. The reconstructed TF exhibits a similar behavior to experimentally measured profiles and the genetic expression data are fitted properly.
Keywords: gene regulatory network; penalized likelihood; ordinary differential equation; parameter estimation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/sagmb-2012-0006 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:12:y:2013:i:1:p:109-127:n:2
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/sagmb-2012-0006
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().