EconPapers    
Economics at your fingertips  
 

Higher order asymptotics for negative binomial regression inferences from RNA-sequencing data

Di Yanming (), Emerson Sarah C., Schafer Daniel W., Kimbrel Jeffrey A. and Chang Jeff H.
Additional contact information
Di Yanming: Department of Statistics, Oregon State University, 44 Kidder Hall, Corvallis, OR 97330, USA
Emerson Sarah C.: Oregon State University
Schafer Daniel W.: Oregon State University
Kimbrel Jeffrey A.: Oregon State University
Chang Jeff H.: Oregon State University

Statistical Applications in Genetics and Molecular Biology, 2013, vol. 12, issue 1, 49-70

Abstract: RNA sequencing (RNA-Seq) is the current method of choice for characterizing transcriptomes and quantifying gene expression changes. This next generation sequencing-based method provides unprecedented depth and resolution. The negative binomial (NB) probability distribution has been shown to be a useful model for frequencies of mapped RNA-Seq reads and consequently provides a basis for statistical analysis of gene expression. Negative binomial exact tests are available for two-group comparisons but do not extend to negative binomial regression analysis, which is important for examining gene expression as a function of explanatory variables and for adjusted group comparisons accounting for other factors. We address the adequacy of available large-sample tests for the small sample sizes typically available from RNA-Seq studies and consider a higher-order asymptotic (HOA) adjustment to likelihood ratio tests. We demonstrate that 1) the HOA-adjusted likelihood ratio test is practically indistinguishable from the exact test in situations where the exact test is available, 2) the type I error of the HOA test matches the nominal specification in regression settings we examined via simulation, and 3) the power of the likelihood ratio test does not appear to be affected by the HOA adjustment. This work helps clarify the accuracy of the unadjusted likelihood ratio test and the degree of improvement available with the HOA adjustment. Furthermore, the HOA test may be preferable even when the exact test is available because it does not require ad hoc library size adjustments.

Keywords: RNA-Seq; higher-order asymptotics; negative binomial; regression; overdispersion; extra-Poisson variation (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/sagmb-2012-0071 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:12:y:2013:i:1:p:49-70:n:7

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2012-0071

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:12:y:2013:i:1:p:49-70:n:7