EconPapers    
Economics at your fingertips  
 

Genetic model selection in genome-wide association studies: robust methods and the use of meta-analysis

Bagos Pantelis G. ()
Additional contact information
Bagos Pantelis G.: Department of Computer Science and Biomedical Informatics, University of Central Greece, Papasiopoulou 2-4, Lamia 35100, Greece

Statistical Applications in Genetics and Molecular Biology, 2013, vol. 12, issue 3, 285-308

Abstract: In genetic association studies (GAS) as well as in genome-wide association studies (GWAS), the mode of inheritance (dominant, additive and recessive) is usually not known a priori. Assuming an incorrect mode of inheritance may lead to substantial loss of power, whereas on the other hand, testing all possible models may result in an increased type I error rate. The situation is even more complicated in the meta-analysis of GAS or GWAS, in which individual studies are synthesized to derive an overall estimate. Meta-analysis increases the power to detect weak genotype effects, but heterogeneity and incompatibility between the included studies complicate things further. In this review, we present a comprehensive summary of the statistical methods used for robust analysis and genetic model selection in GAS and GWAS. We then discuss the application of such methods in the context of meta-analysis. We describe the theoretical properties of the various methods and the foundations on which they are based. We also present the available software implementations of the described methods. Finally, since only few of the available robust methods have been applied in the meta-analysis setting, we present some simple extensions that allow robust meta-analysis of GAS and GWAS. Possible extensions and proposals for future work are also discussed.

Keywords: meta-analysis; GWAS; robust methods; genetic model selection; genetic association (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/sagmb-2012-0016 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:12:y:2013:i:3:p:285-308:n:1003

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2012-0016

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:12:y:2013:i:3:p:285-308:n:1003