EconPapers    
Economics at your fingertips  
 

Bayesian genomic models for the incorporation of pathway topology knowledge into association studies

Brisbin Abra and Fridley Brooke L. ()
Additional contact information
Brisbin Abra: Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA Department of Mathematics, University of Wisconsin-Eau Claire, Eau Claire, WI 54702, USA
Fridley Brooke L.: Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA

Statistical Applications in Genetics and Molecular Biology, 2013, vol. 12, issue 4, 505-516

Abstract: Pathway topology and relationships between genes have the potential to provide information for modeling effects of mRNA gene expression on complex traits. For example, researchers may wish to incorporate the prior belief that “hub” genes (genes with many neighbors) are more likely to influence the trait. In this paper, we propose and compare six Bayesian pathway-based prior models to incorporate pathway topology information into association analyses. Including prior information regarding the relationships among genes in a pathway was effective in somewhat improving detection rates for genes associated with complex traits. Through an extensive set of simulations, we found that when hub (central) effects are expected, the diagonal degree model is preferred; when spoke (edge) effects are expected, the spatial power model is preferred. When there is no prior knowledge about the location of the effect genes in the pathway (e.g., hub versus spoke model), it is worthwhile to apply multiple models, as the model with the best DIC is not always the one with the best detection rate. We also applied the models to pharmacogenomic studies for the drugs gemcitabine and 6-mercaptopurine and found that the diagonal degree model identified an association between 6-mercaptopurine response and expression of the gene SLC28A3, which was not detectable using the model including no pathway information. These results demonstrate the value of incorporating pathway information into association analyses.

Keywords: Bayesian; pathway topology; mRNA expression; graph (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/sagmb-2012-0061 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:12:y:2013:i:4:p:505-516:n:6

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2012-0061

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:12:y:2013:i:4:p:505-516:n:6