EconPapers    
Economics at your fingertips  
 

Improving the efficiency of genomic selection

Scutari Marco (), Mackay Ian and Balding David
Additional contact information
Scutari Marco: Genetics Institute, University College London (UCL), London, UK
Mackay Ian: National Institute of Agricultural Botany (NIAB), Cambridge, UK
Balding David: Genetics Institute, University College London (UCL), London, UK

Statistical Applications in Genetics and Molecular Biology, 2013, vol. 12, issue 4, 517-527

Abstract: We investigate two approaches to increase the efficiency of phenotypic prediction from genome-wide markers, which is a key step for genomic selection (GS) in plant and animal breeding. The first approach is feature selection based on Markov blankets, which provide a theoretically-sound framework for identifying non-informative markers. Fitting GS models using only the informative markers results in simpler models, which may allow cost savings from reduced genotyping. We show that this is accompanied by no loss, and possibly a small gain, in predictive power for four GS models: partial least squares (PLS), ridge regression, LASSO and elastic net. The second approach is the choice of kinship coefficients for genomic best linear unbiased prediction (GBLUP). We compare kinships based on different combinations of centring and scaling of marker genotypes, and a newly proposed kinship measure that adjusts for linkage disequilibrium (LD). We illustrate the use of both approaches and examine their performances using three real-world data sets with continuous phenotypic traits from plant and animal genetics. We find that elastic net with feature selection and GBLUP using LD-adjusted kinships performed similarly well, and were the best-performing methods in our study.

Keywords: genome-wide prediction; genomic selection; feature selection; Markov blanket; linkage disequilibrium; kinship (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/sagmb-2013-0002 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:12:y:2013:i:4:p:517-527:n:7

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2013-0002

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:12:y:2013:i:4:p:517-527:n:7