EconPapers    
Economics at your fingertips  
 

Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data

Hossain Ahmed () and Beyene Joseph
Additional contact information
Hossain Ahmed: Clinical Epidemiology and Biostatistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada
Beyene Joseph: Clinical Epidemiology and Biostatistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada

Statistical Applications in Genetics and Molecular Biology, 2013, vol. 12, issue 6, 743-755

Abstract: MicroRNAs (miRNAs) are short non-coding RNAs that play critical roles in numerous cellular processes through post-transcriptional functions. The aberrant role of miRNAs has been reported in a number of diseases. A robust computational method is vital to discover novel miRNAs where level of noise varies dramatically across the different miRNAs. In this paper, we propose a flexible rank-based procedure for estimating a weighted log partial area under the receiver operating characteristic (ROC) curve statistic for selecting differentially expressed miRNAs. The statistic combines results taking partial area under the curve (pAUC) and their corresponding variance. The proposed method does not involve complicated formulas and does not require advanced programming skills. Two real datasets are analyzed to illustrate the method and a simulation study is carried out to assess the performance of different miRNA ranking statistics. We conclude that the proposed method offers robust results with large samples for miRNA expression data, and the method can be used as an alternative analytical tool for identifying a list of target miRNAs for further biological and clinical investigation.

Keywords: microRNA; receiver operating characteristic curve; differential expression; false discovery rate (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1515/sagmb-2013-0035 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:12:y:2013:i:6:p:743-755:n:6

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2013-0035

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:12:y:2013:i:6:p:743-755:n:6