EconPapers    
Economics at your fingertips  
 

Random forests on distance matrices for imaging genetics studies

Sim Aaron, Tsagkrasoulis Dimosthenis and Giovanni Montana ()
Additional contact information
Sim Aaron: Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, UK
Tsagkrasoulis Dimosthenis: Statistics Section, Department of Mathematics, Imperial College London, UK

Statistical Applications in Genetics and Molecular Biology, 2013, vol. 12, issue 6, 757-786

Abstract: We propose a non-parametric regression methodology, Random Forests on Distance Matrices (RFDM), for detecting genetic variants associated to quantitative phenotypes, obtained using neuroimaging techniques, representing the human brain’s structure or function. RFDM, which is an extension of decision forests, requires a distance matrix as the response that encodes all pair-wise phenotypic distances in the random sample. We discuss ways to learn such distances directly from the data using manifold learning techniques, and how to define such distances when the phenotypes are non-vectorial objects such as brain connectivity networks. We also describe an extension of RFDM to detect espistatic effects while keeping the computational complexity low. Extensive simulation results and an application to an imaging genetics study of Alzheimer’s Disease are presented and discussed.

Keywords: genetic associations; random forests; quantitative traits; imaging genetics; Alzheimer’s Disease (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/sagmb-2013-0040 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:12:y:2013:i:6:p:757-786:n:7

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2013-0040

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:12:y:2013:i:6:p:757-786:n:7