Quantifying the multi-scale performance of network inference algorithms
Oates Chris J. (),
Amos Richard and
Spencer Simon E.F.
Additional contact information
Oates Chris J.: Department of Statistics, Zeeman Building, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
Amos Richard: The MathWorks, 10 Cowley Park, Cambridge, CB4 0HH, UK
Spencer Simon E.F.: Department of Statistics, Zeeman Building, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
Statistical Applications in Genetics and Molecular Biology, 2014, vol. 13, issue 5, 611-631
Abstract:
Graphical models are widely used to study complex multivariate biological systems. Network inference algorithms aim to reverse-engineer such models from noisy experimental data. It is common to assess such algorithms using techniques from classifier analysis. These metrics, based on ability to correctly infer individual edges, possess a number of appealing features including invariance to rank-preserving transformation. However, regulation in biological systems occurs on multiple scales and existing metrics do not take into account the correctness of higher-order network structure. In this paper novel performance scores are presented that share the appealing properties of existing scores, whilst capturing ability to uncover regulation on multiple scales. Theoretical results confirm that performance of a network inference algorithm depends crucially on the scale at which inferences are to be made; in particular strong local performance does not guarantee accurate reconstruction of higher-order topology. Applying these scores to a large corpus of data from the DREAM5 challenge, we undertake a data-driven assessment of estimator performance. We find that the “wisdom of crowds” network, that demonstrated superior local performance in the DREAM5 challenge, is also among the best performing methodologies for inference of regulation on multiple length scales.
Keywords: multi-scale scores; network inference; performance assessment (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1515/sagmb-2014-0012 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:13:y:2014:i:5:p:21:n:6
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/sagmb-2014-0012
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().