EconPapers    
Economics at your fingertips  
 

When is Menzerath-Altmann law mathematically trivial? A new approach

Ferrer-i-Cancho Ramon (), Hernández-Fernández Antoni, Baixeries Jaume, Dębowski Łukasz and Mačutek Ján
Additional contact information
Ferrer-i-Cancho Ramon: Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona (Catalonia), Spain
Hernández-Fernández Antoni: Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona (Catalonia), Spain Departament de Lingüística General, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona (Catalonia), Spain
Baixeries Jaume: Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona (Catalonia), Spain
Dębowski Łukasz: Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
Mačutek Ján: Department of Applied Mathematics and Statistics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia

Statistical Applications in Genetics and Molecular Biology, 2014, vol. 13, issue 6, 633-644

Abstract: Menzerath’s law, the tendency of Z (the mean size of the parts) to decrease as X (the number of parts) increases, is found in language, music and genomes. Recently, it has been argued that the presence of the law in genomes is an inevitable consequence of the fact that Z=Y/X, which would imply that Z scales with X as Z∼1/X. That scaling is a very particular case of Menzerath-Altmann law that has been rejected by means of a correlation test between X and Y in genomes, being X the number of chromosomes of a species, Y its genome size in bases and Z the mean chromosome size. Here we review the statistical foundations of that test and consider three non-parametric tests based upon different correlation metrics and one parametric test to evaluate if Z∼1/X in genomes. The most powerful test is a new non-parametric one based upon the correlation ratio, which is able to reject Z∼1/X in nine out of 11 taxonomic groups and detect a borderline group. Rather than a fact, Z∼1/X is a baseline that real genomes do not meet. The view of Menzerath-Altmann law as inevitable is seriously flawed.

Keywords: genomes; Menzerath-Altmann law; Monte Carlo methods; power-laws (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/sagmb-2013-0034 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:13:y:2014:i:6:p:12:n:1

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2013-0034

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:13:y:2014:i:6:p:12:n:1