EconPapers    
Economics at your fingertips  
 

A Bayesian mixture model for chromatin interaction data

Niu Liang and Lin Shili ()
Additional contact information
Niu Liang: Department of Environmental Health, School of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
Lin Shili: Department of Statistics, Ohio State University, Columbus, OH 43210, USA

Statistical Applications in Genetics and Molecular Biology, 2015, vol. 14, issue 1, 53-64

Abstract: Chromatin interactions mediated by a particular protein are of interest for studying gene regulation, especially the regulation of genes that are associated with, or known to be causative of, a disease. A recent molecular technique, Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET), that uses chromatin immunoprecipitation (ChIP) and high throughput paired-end sequencing, is able to detect such chromatin interactions genomewide. However, ChIA-PET may generate noise (i.e., pairings of DNA fragments by random chance) in addition to true signal (i.e., pairings of DNA fragments by interactions). In this paper, we propose MC_DIST based on a mixture modeling framework to identify true chromatin interactions from ChIA-PET count data (counts of DNA fragment pairs). The model is cast into a Bayesian framework to take into account the dependency among the data and the available information on protein binding sites and gene promoters to reduce false positives. A simulation study showed that MC_DIST outperforms the previously proposed hypergeometric model in terms of both power and type I error rate. A real data study showed that MC_DIST may identify potential chromatin interactions between protein binding sites and gene promoters that may be missed by the hypergeometric model. An R package implementing the MC_DIST model is available at http://www.stat.osu.edu/~statgen/SOFTWARE/MDM.

Keywords: Bayesian mixture model; ChIA-PET; R package (search for similar items in EconPapers)
Date: 2015
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/sagmb-2014-0029 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:14:y:2015:i:1:p:53-64:n:5

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2014-0029

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:14:y:2015:i:1:p:53-64:n:5