Regularization method for predicting an ordinal response using longitudinal high-dimensional genomic data
Hou Jiayi and
Archer Kellie J. ()
Additional contact information
Hou Jiayi: Department of Biostatistics, Virginia Commonwealth University, VA, USA
Archer Kellie J.: Department of Biostatistics, Virginia Commonwealth University, VA, USA
Statistical Applications in Genetics and Molecular Biology, 2015, vol. 14, issue 1, 93-111
Abstract:
An ordinal scale is commonly used to measure health status and disease related outcomes in hospital settings as well as in translational medical research. In addition, repeated measurements are common in clinical practice for tracking and monitoring the progression of complex diseases. Classical methodology based on statistical inference, in particular, ordinal modeling has contributed to the analysis of data in which the response categories are ordered and the number of covariates (p) remains smaller than the sample size (n). With the emergence of genomic technologies being increasingly applied for more accurate diagnosis and prognosis, high-dimensional data where the number of covariates (p) is much larger than the number of samples (n), are generated. To meet the emerging needs, we introduce our proposed model which is a two-stage algorithm: Extend the generalized monotone incremental forward stagewise (GMIFS) method to the cumulative logit ordinal model; and combine the GMIFS procedure with the classical mixed-effects model for classifying disease status in disease progression along with time. We demonstrate the efficiency and accuracy of the proposed models in classification using a time-course microarray dataset collected from the Inflammation and the Host Response to Injury study.
Keywords: classification; high-dimensional data; longitudinal data; ordinal response; prediction; regularization methods (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/sagmb-2014-0004 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:14:y:2015:i:1:p:93-111:n:2
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/sagmb-2014-0004
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().