GenePEN: analysis of network activity alterations in complex diseases via the pairwise elastic net
Vlassis Nikos and
Glaab Enrico ()
Additional contact information
Vlassis Nikos: Adobe Research, Systems Technology Lab/Imagination Lab, 345 Park Avenue, San Jose, CA 95110, USA
Glaab Enrico: University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 7, avenue des Hauts Fourneaux, Esch-sue-Alzette 4362, Luxembourg
Statistical Applications in Genetics and Molecular Biology, 2015, vol. 14, issue 2, 221-224
Abstract:
Complex diseases are often characterized by coordinated expression alterations of genes and proteins which are grouped together in a molecular network. Identifying such interconnected and jointly altered gene/protein groups from functional omics data and a given molecular interaction network is a key challenge in bioinformatics. We describe GenePEN, a penalized logistic regression approach for sample classification via convex optimization, using a newly designed Pairwise Elastic Net penalty that favors the selection of discriminative genes/proteins according to their connectedness in a molecular interaction graph. An efficient implementation of the method finds provably optimal solutions on high-dimensional omics data in a few seconds and is freely available at http://lcsb-portal.uni.lu/bioinformatics.
Keywords: machine learning; microarray analysis; network analysis (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/sagmb-2014-0045 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:14:y:2015:i:2:p:221-224:n:4
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/sagmb-2014-0045
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().