EconPapers    
Economics at your fingertips  
 

Exact likelihood-free Markov chain Monte Carlo for elliptically contoured distributions

Muchmore Patrick () and Marjoram Paul
Additional contact information
Muchmore Patrick: Division of Biostatistics, Department of Preventive Medicine, University of Southern California, 2001 N Soto Street, Los Angeles, CA 90089-9237, USA
Marjoram Paul: Division of Biostatistics, Department of Preventive Medicine, University of Southern California, 2001 N Soto Street, Los Angeles, CA 90089-9237, USA

Statistical Applications in Genetics and Molecular Biology, 2015, vol. 14, issue 4, 317-332

Abstract: Recent results in Markov chain Monte Carlo (MCMC) show that a chain based on an unbiased estimator of the likelihood can have a stationary distribution identical to that of a chain based on exact likelihood calculations. In this paper we develop such an estimator for elliptically contoured distributions, a large family of distributions that includes and generalizes the multivariate normal. We then show how this estimator, combined with pseudorandom realizations of an elliptically contoured distribution, can be used to run MCMC in a way that replicates the stationary distribution of a likelihood based chain, but does not require explicit likelihood calculations. Because many elliptically contoured distributions do not have closed form densities, our simulation based approach enables exact MCMC based inference in a range of cases where previously it was impossible.

Keywords: computer simulation; elliptically contoured distributions; likelihood-free inference; multivariate analysis (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/sagmb-2014-0063 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:14:y:2015:i:4:p:317-332:n:4

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2014-0063

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:14:y:2015:i:4:p:317-332:n:4