Simultaneous Bayesian analysis of contingency tables in genetic association studies
Thorsten Dickhaus
Statistical Applications in Genetics and Molecular Biology, 2015, vol. 14, issue 4, 347-360
Abstract:
Genetic association studies lead to simultaneous categorical data analysis. The sample for every genetic locus consists of a contingency table containing the numbers of observed genotype-phenotype combinations. Under case-control design, the row counts of every table are identical and fixed, while column counts are random. The aim of the statistical analysis is to test independence of the phenotype and the genotype at every locus. We present an objective Bayesian methodology for these association tests, which relies on the conjugacy of Dirichlet and multinomial distributions. Being based on the likelihood principle, the Bayesian tests avoid looping over all tables with given marginals. Making use of data generated by The Wellcome Trust Case Control Consortium (WTCCC), we illustrate that the ordering of the Bayes factors shows a good agreement with that of frequentist p-values. Furthermore, we deal with specifying prior probabilities for the validity of the null hypotheses, by taking linkage disequilibrium structure into account and exploiting the concept of effective numbers of tests. Application of a Bayesian decision theoretic multiple test procedure to the WTCCC data illustrates the proposed methodology. Finally, we discuss two methods for reconciling frequentist and Bayesian approaches to the multiple association test problem.
Keywords: Bayes factors; contingency tables; Dirichlet mixtures; effective number of tests; statistical genetics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/sagmb-2014-0052 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:14:y:2015:i:4:p:347-360:n:2
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/sagmb-2014-0052
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().