EconPapers    
Economics at your fingertips  
 

Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling

Samb Rawane, Khadraoui Khader, Belleau Pascal, Deschênes Astrid, Lakhal-Chaieb Lajmi and Droit Arnaud ()
Additional contact information
Samb Rawane: Centre de Recherche du CHU de Québec – Pavillon CHUL, Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
Khadraoui Khader: Département de mathématiques et statistique, Université Laval, Québec, QC G1V 0A6, Canada
Belleau Pascal: Centre de Recherche du CHU de Québec – Pavillon CHUL, Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
Deschênes Astrid: Centre de Recherche du CHU de Québec – Pavillon CHUL, Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
Lakhal-Chaieb Lajmi: Département de mathématiques et statistique, Université Laval, Québec, QC G1V 0A6, Canada
Droit Arnaud: Centre de Recherche du CHU de Québec – Pavillon CHUL, Faculté de Médecine, Université Laval, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada

Statistical Applications in Genetics and Molecular Biology, 2015, vol. 14, issue 6, 517-532

Abstract: Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression. Recent next generation CHIP-chip and CHIP-Seq technologies have accelerated our understanding of basic principles of chromatin organization. These technologies have taught us that nucleosomes play a crucial role in gene regulation by allowing physical access to transcription factors. Recent methods and experimental advancements allow the determination of nucleosome positions for a given genome area. However, most of these methods estimate the number of nucleosomes either by an EM algorithm using a BIC criterion or an effective heuristic strategy. Here, we introduce a Bayesian method for identifying nucleosome positions. The proposed model is based on a Multinomial-Dirichlet classification and a hierarchical mixture distributions. The number and the positions of nucleosomes are estimated using a reversible jump Markov chain Monte Carlo simulation technique. We compare the performance of our method on simulated data and MNase-Seq data from Saccharomyces cerevisiae against PING and NOrMAL methods.

Keywords: Bayesian t-mixture; genome-wide profiling; Multinomial-Dirichlet prior; nucleosome positioning; reversible-jump MCMC (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/sagmb-2014-0098 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:14:y:2015:i:6:p:517-532:n:2

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2014-0098

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:14:y:2015:i:6:p:517-532:n:2