Empirical likelihood tests for nonparametric detection of differential expression from RNA-seq data
Thorne Thomas ()
Additional contact information
Thorne Thomas: School of Informatics, University of Edinburgh, EH8 9AB, UK
Statistical Applications in Genetics and Molecular Biology, 2015, vol. 14, issue 6, 575-583
Abstract:
The availability of large quantities of transcriptomic data in the form of RNA-seq count data has necessitated the development of methods to identify genes differentially expressed between experimental conditions. Many existing approaches apply a parametric model of gene expression and so place strong assumptions on the distribution of the data. Here we explore an alternate nonparametric approach that applies an empirical likelihood framework, allowing us to define likelihoods without specifying a parametric model of the data. We demonstrate the performance of our method when applied to gold standard datasets, and to existing experimental data. Our approach outperforms or closely matches performance of existing methods in the literature, and requires modest computational resources. An R package, EmpDiff implementing the methods described in the paper is available from: http://homepages.inf.ed.ac.uk/tthorne/software/packages/EmpDiff_0.99.tar.gz.
Keywords: differential expression; RNA-seq; transcriptomics (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/sagmb-2015-0095 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:14:y:2015:i:6:p:575-583:n:5
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/sagmb-2015-0095
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().