Testing differentially expressed genes in dose-response studies and with ordinal phenotypes
Sweeney Elizabeth,
Crainiceanu Ciprian and
Gertheiss Jan ()
Additional contact information
Sweeney Elizabeth: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
Crainiceanu Ciprian: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
Gertheiss Jan: Department of Animal Sciences, Georg August University of Göttingen, Germany
Statistical Applications in Genetics and Molecular Biology, 2016, vol. 15, issue 3, 213-235
Abstract:
When testing for differentially expressed genes between more than two groups, the groups are often defined by dose levels in dose-response experiments or ordinal phenotypes, such as disease stages. We discuss the potential of a new approach that uses the levels’ ordering without making any structural assumptions, such as monotonicity, by testing for zero variance components in a mixed models framework. Since the mixed effects model approach borrows strength across doses/levels, the test proposed can also be applied when the number of dose levels/phenotypes is large and/or the number of subjects per group is small. We illustrate the new test in simulation studies and on several publicly available datasets and compare it to alternative testing procedures. All tests considered are implemented in R and are publicly available. The new approach offers a very fast and powerful way to test for differentially expressed genes between ordered groups without making restrictive assumptions with respect to the true relationship between factor levels and response.
Keywords: ANOVA; microarray data; mixed models; non-monotonic dose-response curves; non-parametric dose-response analysis (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/sagmb-2015-0091 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:15:y:2016:i:3:p:213-235:n:4
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/sagmb-2015-0091
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().