Comparison and visualisation of agreement for paired lists of rankings
Donald Margaret R. () and
Wilson Susan R.
Additional contact information
Donald Margaret R.: Stats Central, University of New South Wales, Anzac Parade, Kensington, NSW, 2052, Australia
Wilson Susan R.: Stats Central, University of New South Wales, Anzac Parade, Kensington, NSW, 2052, Australia
Statistical Applications in Genetics and Molecular Biology, 2017, vol. 16, issue 1, 31-45
Abstract:
Output from analysis of a high-throughput ‘omics’ experiment very often is a ranked list. One commonly encountered example is a ranked list of differentially expressed genes from a gene expression experiment, with a length of many hundreds of genes. There are numerous situations where interest is in the comparison of outputs following, say, two (or more) different experiments, or of different approaches to the analysis that produce different ranked lists. Rather than considering exact agreement between the rankings, following others, we consider two ranked lists to be in agreement if the rankings differ by some fixed distance. Generally only a relatively small subset of the k top-ranked items will be in agreement. So the aim is to find the point k at which the probability of agreement in rankings changes from being greater than 0.5 to being less than 0.5. We use penalized splines and a Bayesian logit model, to give a nonparametric smooth to the sequence of agreements, as well as pointwise credible intervals for the probability of agreement. Our approach produces a point estimate and a credible interval for k. R code is provided. The method is applied to rankings of genes from breast cancer microarray experiments.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/sagmb-2016-0036 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:16:y:2017:i:1:p:31-45:n:4
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.1515/sagmb-2016-0036
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().