Economics at your fingertips  

Modifying SAMseq to account for asymmetry in the distribution of effect sizes when identifying differentially expressed genes

Kotoka Ekua and Orr Megan ()
Additional contact information
Orr Megan: Department of Statistics, North Dakota State University, Fargo, ND 58108-6050, USA

Statistical Applications in Genetics and Molecular Biology, 2017, vol. 16, issue 5-6, 291-312

Abstract: RNA-Seq is a developing technology for generating gene expression data by directly sequencing mRNA molecules in a sample. RNA-Seq data consist of counts of reads recorded to a particular gene that are often used to identify differentially expressed (DE) genes. A common statistical method used to analyze RNA-Seq data is Significance Analysis of Microarray with emphasis on RNA-Seq data (SAMseq). SAMseq is a nonparametric method that uses a resampling technique to account for differences in sequencing depths when identifying DE genes. We propose a modification of this method that takes into account asymmetry in the distribution of the effect sizes by taking into account the sign of the test statistics. Through simulation studies, we showthat the proposed method, comparedwith the traditional SAMseqmethod and other existing methods provides better power for identifying truly DE genes or more sufficiently controls FDR in most settings where asymmetry is present. We illustrate the use of the proposed method by analyzing an RNA-Seq data set containing C57BL/6J (B6) and DBA/2J (D2) mouse strains samples.

Keywords: differentially expressed genes; false discovery rate; RNA-Seq; SAMseq (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

DOI: 10.1515/sagmb-2016-0037

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

Page updated 2021-06-12
Handle: RePEc:bpj:sagmbi:v:16:y:2017:i:5-6:p:291-312:n:1