EconPapers    
Economics at your fingertips  
 

A global test of hybrid ancestry from genome-scale data

Haque Md Rejuan () and Kubatko Laura ()
Additional contact information
Haque Md Rejuan: Division of Biostatistics, College of Public Health, and Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
Kubatko Laura: Department of Statistics and Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA

Statistical Applications in Genetics and Molecular Biology, 2024, vol. 23, issue 1, 18

Abstract: Methods based on the multi-species coalescent have been widely used in phylogenetic tree estimation using genome-scale DNA sequence data to understand the underlying evolutionary relationship between the sampled species. Evolutionary processes such as hybridization, which creates new species through interbreeding between two different species, necessitate inferring a species network instead of a species tree. A species tree is strictly bifurcating and thus fails to incorporate hybridization events which require an internal node of degree three. Hence, it is crucial to decide whether a tree or network analysis should be performed given a DNA sequence data set, a decision that is based on the presence of hybrid species in the sampled species. Although many methods have been proposed for hybridization detection, it is rare to find a technique that does so globally while considering a data generation mechanism that allows both hybridization and incomplete lineage sorting. In this paper, we consider hybridization and coalescence in a unified framework and propose a new test that can detect whether there are any hybrid species in a set of species of arbitrary size. Based on this global test of hybridization, one can decide whether a tree or network analysis is appropriate for a given data set.

Keywords: hybridization; coalescence; species tree; species network; global test (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/sagmb-2022-0061 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:23:y:2024:i:1:p:18:n:1

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.1515/sagmb-2022-0061

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:23:y:2024:i:1:p:18:n:1