EconPapers    
Economics at your fingertips  
 

Validation and Discovery in Markov Models of Genetics Data

Victor De Gruttola and Foulkes Andrea S
Additional contact information
Victor De Gruttola: Harvard School of Public Health
Foulkes Andrea S: University of MA

Statistical Applications in Genetics and Molecular Biology, 2004, vol. 3, issue 1, 17

Abstract: Markov models provide a natural framework for modeling cellular and molecular level changes over time. Kalbfleisch and Lawless propose using a Chi-squared statistic for assessing the appropriateness of assuming a first-order, homogeneous Markov process. While this statistic provides a global test of the Markov assumption, it does not permit identification of individual departures. We consider two approaches for discovering specific departures from the Markov assumption. First, we propose a diagnostic that tests whether the number of observed transitions out of a given state at a given time point is different than expected. Second, we construct statistics based on the number of observations in each state at each time point. In both cases, we construct multiple correlated statistics and testing is achieved through simulations. These approaches are applied to HIV genetics sequences measured over time.

Keywords: Markov process; stationarity; first-order; genetics; HIV-1; biomarkers; repeated measures (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1104 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:38

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1104

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:3:y:2004:i:1:n:38