EconPapers    
Economics at your fingertips  
 

Reproducible Research: A Bioinformatics Case Study

Gentleman Robert
Additional contact information
Gentleman Robert: Harvard University

Statistical Applications in Genetics and Molecular Biology, 2005, vol. 4, issue 1, 25

Abstract: While scientific research and the methodologies involved have gone through substantial technological evolution the technology involved in the publication of the results of these endeavors has remained relatively stagnant. Publication is largely done in the same manner today as it was fifty years ago. Many journals have adopted electronic formats, however, their orientation and style is little different from a printed document. The documents tend to be static and take little advantage of computational resources that might be available. Recent work, Gentleman and Temple Lang (2003), suggests a methodology and basic infrastructure that can be used to publish documents in a substantially different way. Their approach is suitable for the publication of papers whose message relies on computation. Stated quite simply, Gentleman and Temple Lang (2003) propose a paradigm where documents are mixtures of code and text. Such documents may be self-contained or they may be a component of a compendium which provides the infrastructure needed to provide access to data and supporting software. These documents, or compendiums, can be processed in a number of different ways. One transformation will be to replace the code with its output -- thereby providing the familiar, but limited, static document. In this paper we apply these concepts to a seminal paper in bioinformatics, namely The Molecular Classification of Cancer, Golub et al (1999). The authors of that paper have generously provided data and other information that have allowed us to largely reproduce their results. Rather than reproduce this paper exactly we demonstrate that such a reproduction is possible and instead concentrate on demonstrating the usefulness of the compendium concept itself.

Keywords: computational science; reproducibility; literate programming (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1034 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:4:y:2005:i:1:n:2

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1034

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:4:y:2005:i:1:n:2