EconPapers    
Economics at your fingertips  
 

Cox Survival Analysis of Microarray Gene Expression Data Using Correlation Principal Component Regression

Zhao Qiang and Sun Jianguo
Additional contact information
Zhao Qiang: Texas State University
Sun Jianguo: University of Missouri-Columbia

Statistical Applications in Genetics and Molecular Biology, 2007, vol. 6, issue 1, 1-16

Abstract: Statistical analysis of microarray gene expression data has recently attracted a great deal of attention. One problem of interest is to relate genes to survival outcomes of patients with the purpose of building regression models for the prediction of future patients' survival based on their gene expression data. For this, several authors have discussed the use of the proportional hazards or Cox model after reducing the dimension of the gene expression data. This paper presents a new approach to conduct the Cox survival analysis of microarray gene expression data with the focus on models' predictive ability. The method modifies the correlation principal component regression (Sun, 1995) to handle the censoring problem of survival data. The results based on simulated data and a set of publicly available data on diffuse large B-cell lymphoma show that the proposed method works well in terms of models' robustness and predictive ability in comparison with some existing partial least squares approaches. Also, the new approach is simpler and easy to implement.

Date: 2007
References: View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1153 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:6:y:2007:i:1:n:16

Ordering information: This journal article can be ordered from
https://www.degruyter.com/view/j/sagmb

DOI: 10.2202/1544-6115.1153

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2021-05-07
Handle: RePEc:bpj:sagmbi:v:6:y:2007:i:1:n:16