Self-Organizing Maps with Statistical Phase Synchronization (SOMPS) for Analyzing Cell Cycle-Specific Gene Expression Data
Kim Chang Sik
Additional contact information
Kim Chang Sik: Institute of Animal Resources Research, Kangwon National University
Statistical Applications in Genetics and Molecular Biology, 2008, vol. 7, issue 1, 34
Abstract:
Based on previous studies related to the yeast cell cycle, it is well known that the underlying cellular network in yeast consists of many interactions between genes that have periodic expression patterns during the cell division cycle. In this study, it is proposed that cell cycle-specific gene expression can be understood as a phenomenon of collective synchronization or, in other words, an ensemble of non-identical oscillating response signals from different systems. Therefore, we aimed to apply the theory of statistical multivariate phase synchronization to understand the cell's cyclic transcriptome as a phenomenon of collective synchronization. To this end, a novel algorithm called Self-Organizing Maps with statistical Phase Synchronization (SOMPS) is proposed and evaluated using yeast cell cycle-specific gene expression data. From the evaluation experiments, we draw the following conclusions: 1) It is possible to find groups of genes that have biological interactions with each other and significantly share gene ontology slim terms of biological processes using the theory of multivariate phase synchronization with cell cycle-specific gene expression signals; 2) Among all output clusters of SOMPS, a relatively large cluster with high periodicity with respect to its trained mean field can be considered a prominent cluster; 3) For each gene, it is possible to identify the degree of the strength of its biological interactions with other genes using the coupling strength of synchronization with its trained mean field; and 4) It is feasible to understand cell cycle-specific expression patterns as a phenomenon of collective synchronization.
Keywords: phase synchronization; cell cycle; gene expression; self-organizing map (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1323 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:1
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1323
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().