EconPapers    
Economics at your fingertips  
 

Correcting the Estimated Level of Differential Expression for Gene Selection Bias: Application to a Microarray Study

Bickel David R.
Additional contact information
Bickel David R.: Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa

Statistical Applications in Genetics and Molecular Biology, 2008, vol. 7, issue 1, 27

Abstract: The level of differential gene expression may be defined as a fold change, a frequency of upregulation, or some other measure of the degree or extent of a difference in expression across groups of interest. On the basis of expression data for hundreds or thousands of genes, inferring which genes are differentially expressed or ranking genes in order of priority introduces a bias in estimates of their differential expression levels. A previous correction of this feature selection bias suffers from a lack of generality in the method of ranking genes, from requiring many biological replicates, and from unnecessarily overcompensating for the bias.For any method of ranking genes on the basis of gene expression measured for as few as three biological replicates, a simple leave-one-out algorithm corrects, with less overcompensation, the bias in estimates of the level of differential gene expression. In a microarray data set, the bias correction reduces estimates of the probability of upregulation or downregulation from 100% to as low as 60%, even for genes with estimated local false discovery rates close to 0. A simulation study quantifies both the advantage of smoothing estimates of bias before correction and the degree of overcompensation.

Keywords: conditional bias; conditionally biased estimation; feature selection bias; shrinkage; empirical Bayes; gene rank; data resampling; transcriptional microarray; differential gene expression; fold change estimation; multiple comparisons; cross validation (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1330 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:10

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1330

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:10