EconPapers    
Economics at your fingertips  
 

Calculating Confidence Intervals for Prediction Error in Microarray Classification Using Resampling

Jiang Wenyu, Varma Sudhir and Simon Richard
Additional contact information
Jiang Wenyu: Concordia University
Varma Sudhir: Genomics and Bioinformatics Group, Laboratory of Molecular Pharmacology, National Cancer Institute
Simon Richard: Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute

Statistical Applications in Genetics and Molecular Biology, 2008, vol. 7, issue 1, 22

Abstract: Cross-validation based point estimates of prediction accuracy are frequently reported in microarray class prediction problems. However these point estimates can be highly variable, particularly for small sample numbers, and it would be useful to provide confidence intervals of prediction accuracy.We performed an extensive study of existing confidence interval methods and compared their performance in terms of empirical coverage and width. We developed a bootstrap case cross-validation (BCCV) resampling scheme and defined several confidence interval methods using BCCV with and without bias-correction.The widely used approach of basing confidence intervals on an independent binomial assumption of the leave-one-out cross-validation errors results in serious under-coverage of the true prediction error. Two split-sample based methods previously proposed in the literature tend to give overly conservative confidence intervals. Using BCCV resampling, the percentile confidence interval method was also found to be overly conservative without bias-correction, while the bias corrected accelerated (BCa) interval method of Efron returns substantially anti-conservative confidence intervals. We propose a simple bias reduction on the BCCV percentile interval. The method provides mildly conservative inference under all circumstances studied and outperforms the other methods in microarray applications with small to moderate sample sizes.

Keywords: microarray study; class prediction; prediction error; confidence interval; resampling; bootstrap; cross-validation (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1322 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:8

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1322

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:7:y:2008:i:1:n:8