Principal Component Discriminant Analysis
Fearn Tom
Additional contact information
Fearn Tom: University College, London
Statistical Applications in Genetics and Molecular Biology, 2008, vol. 7, issue 2, 6
Abstract:
The approach adopted involved two-stages. First the 11205 measurements in the mass spectrometry data were reduced to 14 scores by a principal component analysis of the centered but otherwise untreated and unscaled data matrix. Then a linear classifier was derived by linear discriminant analysis using these 14 scores as inputs. This number of scores was chosen by leave-one-out cross-validation on the training set, where it gave an overall error rate of 14%. Some indication of the information used in the classification may be obtained from an inspection of the coefficients of the linear classifier.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1350 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:7:y:2008:i:2:n:6
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1350
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().