A Classification Model for the Leiden Proteomics Competition
Hoefsloot Huub C. J.,
Smit Suzanne and
Smilde Age K.
Additional contact information
Hoefsloot Huub C. J.: University of Amsterdam
Smit Suzanne: University of Amsterdam
Smilde Age K.: University of Amsterdam
Statistical Applications in Genetics and Molecular Biology, 2008, vol. 7, issue 2, 11
Abstract:
A strategy is presented to build a discrimination model in proteomics studies. The model is built using cross-validation. This cross-validation step can simply be combined with a variable selection method, called rank products. The strategy is especially suitable for the low-samples-to-variables-ratio (undersampling) case, as is often encountered in proteomics and metabolomics studies. As a classification method, Principal Component Discriminant Analysis is used; however, the methodology can be used with any classifier. A data set containing serum samples from breast cancer patients and healthy controls is analysed. Double cross-validation shows that the sensitivity of the model is 82% and the specificity 86%. Potential putative biomarkers are identified using the variable selection method. In each cross-validation loop a classification model is built. The final classification uses a majority voting scheme from the ensemble classifier.
Keywords: classification; curse of dimensionality; statistical validation; double cross-validation; principal component discriminant analysis; biomarker discovery; rank products (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1351 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:7:y:2008:i:2:n:8
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1351
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().