Normalization Method for Transcriptional Studies of Heterogeneous Samples - Simultaneous Array Normalization and Identification of Equivalent Expression
Qin Li-Xuan and
Satagopan Jaya M
Additional contact information
Qin Li-Xuan: Memorial Sloan-Kettering Cancer Center
Satagopan Jaya M: Memorial Sloan-Kettering Cancer Center
Statistical Applications in Genetics and Molecular Biology, 2009, vol. 8, issue 1, 25
Abstract:
Normalization is an important step in the analysis of microarray data of transcription profiles as systematic non-biological variations often arise from the multiple steps involved in any transcription profiling experiment. Existing methods for data normalization often assume that there are few or symmetric differential expression, but this assumption does not always hold. Alternatively, non-differentially expressed genes may be used for array normalization. However, it is unknown at the outset which genes are non-differentially expressed. In this paper we propose a hierarchical mixture model framework to simultaneously identify non-differentially expressed genes and normalize arrays using these genes. The Fisher's information matrix corresponding to array effects is derived, which provides useful intuition for guiding the choice of array normalization method. The operating characteristics of the proposed method are evaluated using simulated data. The simulations conducted under a wide range of parametric configurations suggest that the proposed method provides a useful alternative for array normalization. For example, the proposed method has better sensitivity than median normalization under modest prevalence of differentially expressed genes and when the magnitudes of over-expression and under-expression are not the same. Further, the proposed method has properties similar to median normalization when the prevalence of differentially expressed genes is very small. Empirical illustration of the proposed method is provided using a liposarcoma study from MSKCC to identify genes differentially expressed between normal fat tissue versus liposarcoma tissue samples.
Keywords: gene expression; normalization; mixture models; Fisher’s information (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1339 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:10
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1339
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().