EconPapers    
Economics at your fingertips  
 

Detecting Outlier Samples in Microarray Data

Shieh Albert D and Hung Yeung Sam
Additional contact information
Shieh Albert D: Harvard University
Hung Yeung Sam: University of Hong Kong

Statistical Applications in Genetics and Molecular Biology, 2009, vol. 8, issue 1, 26

Abstract: In this paper, we address the problem of detecting outlier samples with highly different expression patterns in microarray data. Although outliers are not common, they appear even in widely used benchmark data sets and can negatively affect microarray data analysis. It is important to identify outliers in order to explore underlying experimental or biological problems and remove erroneous data. We propose an outlier detection method based on principal component analysis (PCA) and robust estimation of Mahalanobis distances that is fully automatic. We demonstrate that our outlier detection method identifies biologically significant outliers with high accuracy and that outlier removal improves the prediction accuracy of classifiers. Our outlier detection method is closely related to existing robust PCA methods, so we compare our outlier detection method to a prominent robust PCA method.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1426 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:13

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1426

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:13