Orthology-Based Multilevel Modeling of Differentially Expressed Mouse and Human Gene Pairs
Ogorek Benjamin A and
Stefanski Leonard A
Additional contact information
Ogorek Benjamin A: North Carolina State University
Stefanski Leonard A: North Carolina State University
Statistical Applications in Genetics and Molecular Biology, 2009, vol. 8, issue 1, 49
Abstract:
There is great interest in finding human genes expressed through pharmaceutical intervention, thus opening a genomic window into benefit and side-effect profiles of a drug. Human insight gained from FDA-required animal experiments has historically been limited, but in the case of gene expression measurements, proposed biological orthologies between mouse and human genes provide a foothold for animal-to-human extrapolation. We have investigated a five-component, multilevel, bivariate normal mixture model that incorporates mouse, as well as human, gene expression data. The goal is two-fold: to increase human differential gene-finding power; and to find a subclass of gene pairs for which there is a direct exploitable relationship between animal and human genes. In simulation studies, the dual-species model boasted impressive gains in differential gene-finding power over a related marginal model using only human data. Bias in parameter estimation was problematic, however, and occasionally led to failures in control of the false discovery rate. Though it was considerably more difficult to find species-extrapolative gene-pairs (than differentially expressed human genes), simulation experiments deemed it to be possible, especially when traditional FDR controls are relaxed and under hypothetical parameter configurations.
Keywords: orthology; ortholog; hierarchical modeling; differential expression; microarray; gene expression; multilevel modeling; empirical Bayes; multiple testing; species extrapolation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1414 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:2
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1414
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().