EconPapers    
Economics at your fingertips  
 

Multilevel Comparison of Dendrograms: A New Method with an Application for Genetic Classifications

Podani János, Engloner Attila and Major Agnes
Additional contact information
Podani János: Eotvos University
Engloner Attila: Eotvos University
Major Agnes: Hungarian Natural History Museum

Statistical Applications in Genetics and Molecular Biology, 2009, vol. 8, issue 1, 16

Abstract: Procedures are currently available for the evaluation of hierarchical classifications of produce tree dissimilarities or consensus dendrograms. Some tests of cluster validity operate by comparing all possible partitions from a tree with a reference partition. We propose an exhaustive search procedure to compare all partitions from one dendrogram with all partitions derived from the other to detect hierarchical levels at which the two dendrograms show maximum agreement. The method is illustrated using RAPD and microsatellite data in order to detect clones in reed populations. The utility of our approach is its ability to reveal extra information in different genetic data sets which would be hidden otherwise. The method is also useful in any field of science where hierarchical clustering is the main research tool and comparison of results is an objective. Artificial and actual dendrograms, together with randomly simulated trees were used to compare the performance of five classical coefficients of partition dissimilarity. The simulations showed that when meaningful group structure is lacking, then the five coefficients are in full disagreement, but they perform similarly otherwise.

Keywords: clonal diversity; hierarchical clustering; microsatellites; partitions; Phragmites australis; Rand index; RAPD (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1443 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:22

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1443

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:22