Bayesian Unsupervised Learning with Multiple Data Types
Agius Phaedra,
Ying Yiming and
Campbell Colin
Additional contact information
Agius Phaedra: MSKCC
Ying Yiming: University of Bristol
Campbell Colin: University of Bristol
Statistical Applications in Genetics and Molecular Biology, 2009, vol. 8, issue 1, 29
Abstract:
We propose Bayesian generative models for unsupervised learning with two types of data and an assumed dependency of one type of data on the other. We consider two algorithmic approaches, based on a correspondence model, where latent variables are shared across datasets. These models indicate the appropriate number of clusters in addition to indicating relevant features in both types of data. We evaluate the model on artificially created data. We then apply the method to a breast cancer dataset consisting of gene expression and microRNA array data derived from the same patients. We assume partial dependence of gene expression on microRNA expression in this study. The method ranks genes within subtypes which have statistically significant abnormal expression and ranks associated abnormally expressing microRNA. We report a genetic signature for the basal-like subtype of breast cancer found across a number of previous gene expression array studies. Using the two algorithmic approaches we find that this signature also arises from clustering on the microRNA expression data and appears derivative from this data.
Keywords: multiple datasets; correspondence model; Bayesian learning; unsupervised learning; clusters; breast cancer; cancer subtypes; genes; microRNA (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1441 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:27
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1441
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().