Inferring Dynamic Genetic Networks with Low Order Independencies
Lèbre Sophie
Additional contact information
Lèbre Sophie: Université d’Evry-Val-D’Essonne, Laboratoire Statistique et Genome (UMR CNRS 8071)
Statistical Applications in Genetics and Molecular Biology, 2009, vol. 8, issue 1, 40
Abstract:
In this paper, we introduce a novel inference method for dynamic genetic networks which makes it possible to face a number of time measurements n that is much smaller than the number of genes p. The approach is based on the concept of a low order conditional dependence graph that we extend here in the case of dynamic Bayesian networks. Most of our results are based on the theory of graphical models associated with the directed acyclic graphs (DAGs). In this way, we define a minimal DAG G which describes exactly the full order conditional dependencies given in the past of the process. Then, to face with the large p and small n estimation case, we propose to approximate DAG G by considering low order conditional independencies. We introduce partial qth order conditional dependence DAGs G(q) and analyze their probabilistic properties. In general, DAGs G(q) differ from DAG G but still reflect relevant dependence facts for sparse networks such as genetic networks. By using this approximation, we set out a non-Bayesian inference method and demonstrate the effectiveness of this approach on both simulated and real data analysis. The inference procedure is implemented in the R package 'G1DBN' freely available from the R archive (CRAN).
Keywords: dynamic Bayesian networks; graphical modeling; directed acyclic graphs; conditional independence; networks inference; time series modeling (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1294 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:9
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1294
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().