EconPapers    
Economics at your fingertips  
 

Sub-Modular Resolution Analysis by Network Mixture Models

Marras Elisabetta, Travaglione Antonella and Capobianco Enrico
Additional contact information
Marras Elisabetta: CRS4 Bioinformatics Lab
Travaglione Antonella: CRS4 Bioinformatics Lab
Capobianco Enrico: CRS4 Bioinformatics Lab

Statistical Applications in Genetics and Molecular Biology, 2010, vol. 9, issue 1, 43

Abstract: Inferring the structure of networks usually involves the attempt of retrieving their modular organization and knowing its possible interpretation, while quantifying the involved computational complexity through the methods and algorithms to be used. In protein interactomics, it is assumed that even the most recently created interactomes are known only up to a certain degree of coverage and accuracy, due to both experimental and computational limitations. Therefore, we need to infer from the measured interactomes about real interactomes as much as we infer from samples relative to a reference population. In order to exploit additional information sources, it is common to integrate multiple omic data and pursue method fusion. Particularly after the advent of high-throughput technologies, the increased complexity of data-intensive applications has determined an important role for network inference. Consequently, advances in spectral clustering, community detection algorithms and modularity optimization methods have been proposed, according to both deterministic and probabilistic solutions. We have considered the two kinds of approaches, and applied some of the available methods to two human interactomes obtained from high-throughput small-scale experiments and mass spectrometry measurements. The main motivation of this study is refining the resolution spectrum at which protein modularity maps can be studied. First, we started by a coarse-grained interactome decomposition through core and community structures, and by applying sub-sampling to the interactome adjacency matrix. Then, we switched to stochastic methods to uncover fine-grained interactome components, and applied both variational and mixture statistical models. Lastly, we integrated our analysis with the biological validation of the retrieved modules. Overall, the proposed approach shows potential for calibrating modularity detection in protein interactomes at different resolutions.

Keywords: biological networks; interactome modularity; mixture models; variational learning; biological validation (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1523 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:19

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1523

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:19