Network Enrichment Analysis in Complex Experiments
Shojaie Ali and
Michailidis George
Additional contact information
Shojaie Ali: University of Michigan - Ann Arbor
Michailidis George: University of Michigan - Ann Arbor
Statistical Applications in Genetics and Molecular Biology, 2010, vol. 9, issue 1, 36
Abstract:
Cellular functions of living organisms are carried out through complex systems of interacting components. Including such interactions in the analysis, and considering sub-systems defined by biological pathways instead of individual components (e.g. genes), can lead to new findings about complex biological mechanisms. Networks are often used to capture such interactions and can be incorporated in models to improve the efficiency in estimation and inference. In this paper, we propose a model for incorporating external information about interactions among genes (proteins/metabolites) in differential analysis of gene sets. We exploit the framework of mixed linear models and propose a flexible inference procedure for analysis of changes in biological pathways. The proposed method facilitates the analysis of complex experiments, including multiple experimental conditions and temporal correlations among observations. We propose an efficient iterative algorithm for estimation of the model parameters and show that the proposed framework is asymptotically robust to the presence of noise in the network information. The performance of the proposed model is illustrated through the analysis of gene expression data for environmental stress response (ESR) in yeast, as well as simulated data sets.
Keywords: gene network; enrichment analysis; gene set analysis; complex experiments; spatio-temporal model; mixed linear model; systems biology (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1483 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:22
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1483
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().