Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data
Wang Zhu and
Wang C.Y.
Additional contact information
Wang Zhu: Yale University
Wang C.Y.: Fred Hutchinson Cancer Research Center
Statistical Applications in Genetics and Molecular Biology, 2010, vol. 9, issue 1, 33
Abstract:
There has been increasing interest in predicting patients' survival after therapy by investigating gene expression microarray data. In the regression and classification models with high-dimensional genomic data, boosting has been successfully applied to build accurate predictive models and conduct variable selection simultaneously. We propose the Buckley-James boosting for the semiparametric accelerated failure time models with right censored survival data, which can be used to predict survival of future patients using the high-dimensional genomic data. In the spirit of adaptive LASSO, twin boosting is also incorporated to fit more sparse models. The proposed methods have a unified approach to fit linear models, non-linear effects models with possible interactions. The methods can perform variable selection and parameter estimation simultaneously. The proposed methods are evaluated by simulations and applied to a recent microarray gene expression data set for patients with diffuse large B-cell lymphoma under the current gold standard therapy.
Keywords: boosting; accelerated failure time model; Buckley-James estimator; censored survival data; LASSO; variable selection (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1550 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:24
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1550
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().