Locating Multiple Interacting Quantitative Trait Loci with the Zero-Inflated Generalized Poisson Regression
Erhardt Vinzenz,
Bogdan Malgorzata and
Czado Claudia
Additional contact information
Erhardt Vinzenz: Technische Universität München
Bogdan Malgorzata: Wroclaw University of Technology and Purdue University
Czado Claudia: Technische Universität München
Statistical Applications in Genetics and Molecular Biology, 2010, vol. 9, issue 1, 27
Abstract:
We consider the problem of locating multiple interacting quantitative trait loci (QTL) influencing traits measured in counts. In many applications the distribution of the count variable has a spike at zero. Zero-inflated generalized Poisson regression (ZIGPR) allows for an additional probability mass at zero and hence an improvement in the detection of significant loci. Classical model selection criteria often overestimate the QTL number. Therefore, modified versions of the Bayesian Information Criterion (mBIC and EBIC) were successfully used for QTL mapping. We apply these criteria based on ZIGPR as well as simpler models. An extensive simulation study shows their good power detecting QTL while controlling the false discovery rate. We illustrate how the inability of the Poisson distribution to account for over-dispersion leads to an overestimation of the QTL number and hence strongly discourages its application for identifying factors influencing count data. The proposed method is used to analyze the mice gallstone data of Lyons et al. (2003). Our results suggest the existence of a novel QTL on chromosome 4 interacting with another QTL previously identified on chromosome 5. We provide the corresponding code in R.
Keywords: quantitative trait loci; count data; model selection criteria; zero inflated Poisson regression (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1545 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:26
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1545
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().