Granger Causality Analysis of Human Cell-Cycle Gene Expression Profiles
Nagarajan Radhakrishnan and
Upreti Meenakshi
Additional contact information
Nagarajan Radhakrishnan: University of Arkansas for Medical Sciences
Upreti Meenakshi: University of Arkansas for Medical Sciences
Statistical Applications in Genetics and Molecular Biology, 2010, vol. 9, issue 1, 24
Abstract:
Granger causality (GC) tests are ideally suited to investigate time series data generated by bivariate vector autoregressive (VAR) processes. Recent studies have applied GC analysis and its extensions for modeling functional relationships and network structure from temporal gene expression profiles. The present study investigates GC analysis of human cell-cycle gene expression profiles that can be modeled as a first-order bivariate VAR. Analytical results presented establish the contribution of the VAR process parameters, including auto-regulatory feedback and noise variance to the mean-squared forecast error, as a critical component in identifying statistically significant GC relationships. These results in turn discourage blind inference of functional relationship between a given pair of genes solely based on the result of the statistical tests for GC. The presence of significant auto-regulatory feedback and discrepancy in noise variance is demonstrated across the cell-cycle gene expression profiles by VAR parameter estimation. It is emphasized that discrepancies in noise variance can be due to artifacts and can lead to spurious existence of functional relationship between a given pair of genes. VAR parameter estimation is encouraged for better of GC interpretation of the results. Published case studies on GC analysis of the same publicly available cell-cycle gene expression data are reinvestigated for transparency.
Keywords: Granger causality; gene expression; functional relationships (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1555 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:31
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1555
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().