EconPapers    
Economics at your fingertips  
 

On the Optimal Design of Genetic Variant Discovery Studies

Ionita-Laza Iuliana and Laird Nan M
Additional contact information
Ionita-Laza Iuliana: Columbia University
Laird Nan M: Harvard School of Public Health

Statistical Applications in Genetics and Molecular Biology, 2010, vol. 9, issue 1, 17

Abstract: The recent emergence of massively parallel sequencing technologies has enabled an increasing number of human genome re-sequencing studies, notable among them being the 1000 Genomes Project. The main aim of these studies is to identify the yet unknown genetic variants in a genomic region, mostly low frequency variants (frequency less than 5%). We propose here a set of statistical tools that address how to optimally design such studies in order to increase the number of genetic variants we expect to discover. Within this framework, the tradeoff between lower coverage for more individuals and higher coverage for fewer individuals can be naturally solved.The methods here are also useful for estimating the number of genetic variants missed in a discovery study performed at low coverage.We show applications to simulated data based on coalescent models and to sequence data from the ENCODE project. In particular, we show the extent to which combining data from multiple populations in a discovery study may increase the number of genetic variants identified relative to studies on single populations.

Keywords: species problem; variant discovery studies; sequencing technologies (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.2202/1544-6115.1581 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:33

Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html

DOI: 10.2202/1544-6115.1581

Access Statistics for this article

Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf

More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-19
Handle: RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:33